Streaming Thin Client Compression

- Bernd Oliver Christiansen
- Klaus Erik Schauser
- Malte Muenke

University of California

Thin Client

- Model in which applications are executed on a server and only input events and screen updates travel the network.
- Requires fast and efficient (de)compression of synthetic images

Synthetic Images

- Fewer colors than pixels
- Sharply delineated uniform-color regions with overlaid symbols
- Do not contain regions with smoothly varying pixel intensities
- Contain redundant features/blocks
- Do not compress well with lossy methods.
 Text can become unreadable

Previous Work

- GIF (Graphics Interchange Format)
- PNG (Portable Network Graphic)
- FABD (Flexible Automatic Block Decomposition)
- PWC (Piecewise-constant)

PWC

- Four questions:
 - Q1: Is the current pixel the same value as the one to the left or above?
 - Q2: Is the current pixel the same value as its top-left or top-right neighbor?
 - Q3: Does the current pixel equal a guess?
 (uses known surrounding colors for probability estimation)
 - Q4: What is the pixel's value?

PWC cont'd...

- Decoder "asks" the questions in order.
- Different depths of coding can be used depending on the complexity of color.

TCC

- Basic idea
 - Scan the image for marks
 - Build a codebook (dictionary) of marks
 - Replace marks by dictionary references
 - Code the residue and codebook with PWC

Segmenting the Image into Marks

- Mark: a set of connected pixels that is surrounded by a single-color boundary where no pixel in the set is the same color as the boundary
- Any color transition indicates a "seed"
 - Walk "with the right hand on the wall" along pixels of the same color as the seed

Marks cont'd...

- Exact shape is not extracted. A bounding box is acquired.
- After saving in codebook, the bounding box is filled in with the seeds color.
- Marks are empirically observed to be small.
 - Bounding box restricted to 48x48 pixels maximum

Original

Codebook

Marks

Background

Codebook

- As each bounding box is extracted the library is searched for an exact match.
- In Codebook marks are coded in PWC as well as width and height.
 - Bilevel marks are coded in depth 1 PWC
 - Non Bilevel in depth 4 PWC

Streaming Thin Client Compression

- End to end latency is most important consideration for performance of Thin Clients
- The Streaming version of TCC addresses latency by modifying TCC to allow pipelining.

Streaming cont'd...

- Original TCC requires two passes.
 - One to extract marks and create codebook
 - A second to code the residue
- STCC makes only one pass and fully compresses each row which can then be sent in the pipeline.

Streaming cont'd...

- Issues with only one pass:
 - Must trace in parallel the contours of all marks in the current row.
 - Streaming requires each row to be encoded immediately, codebook must support incremental pointers to partial marks.

Streaming Boundary Tracing

- L and R brackets
 - Do not know if a mark is connected in a following row.
 - Does not trace exact contour of the mark.

Figure 2: Streaming boundary tracing with L-R brackets.

Tree Structured Codebook

 Marks are stored as a path whose nodes are labeled by the mark's pixels.

Figure 3: A bitmap and the corresponding tree-structured codebook.

Shortcomings of Tree Codebook

- Most nodes in the codebook only store pixels and do not have siblings
- When representing the codebook itself assume a high probability for single child nodes and have an escape sequence for branching nodes.

Shortcomings cont'd...

- Guessing connected components
 - When a component that started out as two marks is found to be connected employ a mechanism to guess the connection in the future.

Figure 4: Coding (partial) marks of a connected component as a unit.

Shortcomings cont'd...

- STCC identifies more marks than TCC due to a less strict definition of marks.
 - Increased size of codebook increases pointer size.
 - Maintain a separate codebook tree for each background color. Decoder looks at appropriate tree given the background color.

Conclusion

- PWC is very good at coding uniform blocks of color
- TCC extracts marks into a codebook allowing PWC to perform as best as possible
- STCC pipelines TCC to reduce latency

Results TCC

Figure 5: Compressed size of a series of screendumps. The screendumps were taken every five minutes on a Windows NT workstation running at a resolution of 1152x864 and then quantized to an eight bit palette. They show mostly Outlook and various web pages within IE.

Spikes are due to images in web browser pages

Results STCC

Figure 6: Size of 115 screendumps that were taken over a day.

Results STCC cont'd...

